MARKETING EDUCATION AND APL

E. K. Valentin, Weber State University

ABSTRACT

APL is a very powerful interpreted programming
language. Marketing educators will find it weli-suited
for disposing of innumerable clerical tasks and for
bringing analytical concepts to life in the classroom. In
this article, APL’s distinctive features and applications
are delineated.

INTRODUCTION

APL (a programming language), which is widely used by
actuaries, engineers, scientists, and mathematicians, fills
a gap left by other computer languages and packages,
including spreadsheets and statistical software. This
article provides an overview of APL’s advantages and
drawbacks and suggests how marketing educators can
use APL in and out of the classroom.

DISTINCTIVE FEATURES
Advantages

Although it is possible to write programs in APL that
rescmble their BASIC, FORTRAN, or Pascal
equivalents in structure, initially, it is best not think of
APL as a computer language at all. Instead, APL
should be viewed as a compact and powerful system of
notation for writing expressions resembling matrix
algebra that a computer can execute (Iverson 1962). By

entering X~ 5 3.1.7, for example, a three-element vector
labelled X is created. (The arrow is a special APL

character). Note that nothing about X, such as its
dimensionality, was declared in advance. Moreover,
integers and rational numbers can be mixed freely;
scalars and multidimensional arrays can be created as
readily as the vector X; and m-dimensional arrays are
casily transformed into n-dimensional arrays.

If +/X is entered, the sum of the elements comprising
the vector X is displayed; and if Y+ + /X is entered, the
result (t.e., the sum of X) is stored in a new variable,
labelled Y. Accordingly, the APL operator +/ is

equivalent to the familiar summation operatorZ. If X
were a numerical matrix, entering + /X would display

the sums of the rows; and +/+ /X would display the

109

sum of all values comprising X (i.e, APL would
calculate the sum of each row and then add these
subtotals). Other APL operators {also called
predefined or primitive functions) can be used just
as easily, for instance, to multiply matrices,
transpose matrices, invert matrices, estimate least-
squares coefficients, find the dimensions of arrays,
re-dimension arrays, sort data, transform data (e.g.,
to logarithmic values), create arrays of random
numbers, and generate factorials (Finnish APL
Association 1982; Gilman and Rose 1984). A more
extensive sketch of how APL’s standard operators
can be applied to numeric vectors and matrices,
Boolean vectors, and character vectors and matrices
is provided in the Appendix.

An APL statement may contain many operators
and, therefore, perform many tasks. For example,
in a single statement (which nced not exceed seven
characters), a matrix may be transposed, multiplied
by another matrix, and inverted. Such statements
can be typed and executed ad hoc in the so-called
immediate mode or organized, saved, and used
repeatedly much like Pascal units and objects,
FORTRAN subroutines, and BASIC programs.
However, Rubinstein and Lewis (1984, p. 230) drew
the following parallel between APL and BASIC,
which also applies to other conventional
programming languages:

From the perspective of APL,
programming in BASIC s
comparable to trying to speak
English with a 100 word
vocabulary. Even with this
restriction, you could probably get
along, but it would take a long
time to make yourself understood.

APL is especially well-suited for non-repetitive
analytical work because tasks can be coded
compactly and quickly; and as shown above, APL
operators actually can be applied to data arrays
without writing programs, per se. Moreover, APL
programs often can be developed faster than flow
charts or pseudo-code, which makes APL well-
suited for prototyping,

Drawbacks

APL is interpreted and, therefore, cannot produce
compiled "stand-alone” programs. And although APL is
the preferred language of many actuaries, engineers,
mathematicians, and scientists, most business school
graduates and managers favor electronic spreadsheets.
Moreover, those who have had an introductory lesson in
APL programming are much more likely to hate the
language than to love it. Why? Whereas electronic
spreadsheets mimic the manual counterpart with which
nearly every business student and manager has some
familiarity, APL resembles the mathematical
hieroglyphics many business students deliberately avoid.
In addition, because APL requires many non-standard
symbols (sce the Appendix), the keyboard is redefined
to accommodate the special characters. Using the rede-
fined keyboard is awkward and confusing at first, even
with a template that shows where the APL characters
are located. Moreaover, APL aficionados typically prefer
to impress novices by demonstrate the language’s exotic
and complex capabilities rather than the simple, but
powerful, features, which are easily understood.

ILLUSTRATIVE AFPPLICATIONS
Statistical Analysis

Because APL symbols resemble matrix notation,
statistical programs can be developed with comparative
ease by translating matrix expositions found in statistics
texts into APL code. For that reason, several
commercially available statistical packages, including
Statgraphics and Stat 1, were developed initially in APL.
They were distributed with an APL interpreter that
would run programs, but could not be used to write
them.

Today, many excellent statistical packages are readily
available; yet, APL remains an invaluable self-learning
and teaching aid. Anyone who learns more from tracing
numerical examples and working exercise problems than
from abstract symbolic expositions, will find APL the
perfect "number cruncher.” Years ago, I wrote several
statistical programs (e.g., regression, principal
components, discriminant, and cluster analysis routines)
because I did not have access to a good statistical
package. Wriling such programs enhanced my
understanding of statistical analysis and provided me
with severa! programs and utilities that are still better
suited than commercial packages for demonstrating
various aspects of statistical analysis in the classroom.

110

Also, when fortified with prompts, they are virtually
"idiot proof' and much easier to use than
commercial packages, especially when the data set
to be analyzed is not extremely large.

Data Entry, Editing, and Formatting

Data entry and interviewing screens can be
constructed almost as easily in APL as in Ci2.
Moreover, the same kinds of range checks and
branching can be built in. Furthermore, APL’s
operators are well-suited for identifying likely data
entry errors and outliers; and complex data
transformations can be made much more easily
using APL than using SPSS, for instance. After
data are checked or transformed, they can be
exported from APL work spaces as ASCH files,
which can be read by almost any statistical package,
electronic spreadsheet, and word processor.
Outputs from statistical packages, too, can usually
be exported as ASCII files, which are ecasily
imported into APL work spaces. I have used APL
to reformat SPSS output so as to meet the
requirements of various journals, to conduct
supplementary analyses, and to plot group means on
semantic differential scales along with each
(unabridged) questionnaire item.

Pedagogical Applications

Marketing educators will find APL invaluable in
constructing illustrations when teaching marketing
rescarch, marketing management, and other courses
rich in statistical and quantitative content. I have
used APL not only to illuminate statistical
principles, such as the Central Limit Theorem, but
also to illustrate the diffusion of innovations, the
relationship between cash flow and sales over the
product life cycle, retail gravitation and storc
location principles, and brand switching behavior.
Moreover, APL is often much handier than any
spreadsheet for analyzing financial and other data
found in cases and for developing quantitative
handouts and exam problems.

Chores

APL is useful in disposing of countless office
chores; e.g., recording exam scores, calculating and
plotting distributions, determining final grades based
on the best m of n weighted scores, converting
letter-grades to their decimal equivalents, converting

numerical scores to letter grades, etc. Few, if any, grade
book packages approach the flexibility that is easily
programmed into an APL-based grade book.

CONCLUDING COMMENTS

This article provided a glimpse of APL’s power and
potential applications. APL’s major drawbacks are that
programs cannot be run without the interpreter, and it
takes a while to get used to the APL character set and
keyboard layout. A more detailed exposition of the
language, its syntax, and applications can be found in the
widely used manuals by Gilman and Rose {1984) by
Turner (1984),

Unfortunately, sellers of APL packages (mainly STSC
and IBM) do not seem to realize that, even though
business students and faculty may learn to love APL
(Valentin 1989), only engineers and mathematicians are
likely to fall in lIove with APL immediately. Accordingly,
STSC's APL*PLUS/PC is available to students for no
less than $225 (plus shipping); and although STSC does
sell Pocket APL for as little as $35 {plus shipping), the
editing features of this stripped-down version of
APL*PLUS/PC are so awkward that most Pocket APL
customers surely run out of patience long before
discovering APL’s "magic.”

APL2 is a recent extension of APL, which is even more
powerful. For demonstration disks and further
information regarding APL*PLUS/PC and APL2
contact STSC, Inc. (301-984-5000) or IBM (800-1BM-
2468), respectively.

REFERENCES

Gilman, Leonard and Allen J. Rose (1984), APL: An
Interactive Approach. New York: John Wiley and Sons.

Finnish APL Association (1982), Finn APL Pocket
Idiom Library. Helsinki: Finnish APL Association.

Iverson, Kenneth E. (1962), A Programming Language.
New York: John Wiley and Sons.

Rubinstein, Mark and Stephen D. Lewis (1984), "APL:
A Language for Modern Times," PC_ Magazine, 3
(April), 229-39,

Turner, Jerry R, (1984), APL Is Easy! Rockville, MD:
STSC, Inc.

111

Valentin, E. K. (1989), "APL: The Missing Link in
Decision Support Systems?" Journal of Computer

Information Systems, 29 (Summer), 26-29.

APPENDIX

Some Illustrative APL Examples

The listed data sets are used in the illustrative examples.

Numeric vectors:

Numeric
matrix:

Nm

Nv

52 7317 78

Ra =

Character

vector:

Cy =

101011

ABCDEF

Fh =

Character

matrix:

001111

ABCD
EFGH
ILJKL

Cm =

Entry Result displayed Comments
1. 2¢6 3.4 O ~3 None Assigns integers and/or decimals to 2
2. YeZ None Assigns contents of Z to ¥
3. ¥ 6 3.4 0 73 Displays contents of Y
4. pNv 6 Shape of Nv, a 6-element vector
5. eCn 3 4 Shape of Cm, a 3x4 matrix
6. 2 3pNv 5 2 73 Reshapes Nv into a 2x3 matrix
1 7 78
7. 6p'><’ S>> Fills 6 spaces with "»><"
8. 645 11 Adds scalars
9. Ra+Rb 102122 Adds vectors
10. 44NV 961511 74 Adds scalar to vector
11. Nm+3 3pNv 8 0 5 Reshapes Nv, then adds to Nm
514 1
9 8 76
12. +\Nm 3 1 9 Displays cumulative row totals
6 1 10
4 10 7
13. +/Nn 9 10 7 Adds rows
14. +X\Nm 372 8 Displays cumulative column totals
3 517
111 14
15. +#Nm 111 14 Adds columns
16. -Nv 5 2371 778 Reverses signs
17. Ra-RFb 1007100 Subtracts vectors
18. -/Ra 2 1-041-0+1-1

19. -\Ra 112232 Cumulative results for 1-0+1-0+1-1

20. xNv 11"111"71 Shows signs of Nv elements
21. SxNv 25 10 715 5 35 "40 Multiplies a scalar by a vector
22. x\Nv 5 10 ~30 ~30 ~210 1680 Displays sequential products
23. x/Nv 1680 _ Displays final result of chéin multiplication
24. RaxNv 50 307 78 Multiplies vectors
25. +2 4 0.5 0.25 Calculates reciprocals
26. +/100 4 25 Divides first element by second element
27. Nvs2 2.5 1 1.5 0.5 3.5 74 Divides a vector by a scalar
28. %1 0 2 2.7 1 7.4 Raises e to the specified powers
29. Nm#2 9 4 64 Squares elements of Nm
36 49 81
16 36 S
30. L2.77 2.33 2 2 Rourxis down
31. 3LNV 327313 °78 Selects the lesser of 3 and elements of Nv
32. Ralkb 001011 Selects the lesser of Ra and Rb, in pairs
33. L/Nv -8 Selects the smallest element of Nv
34. 72.33 2.67 33 Rounds up
35. 3INv 533373 Selects the greater of 3 and elements of Nv
36. RalRb 101111 Selects the greater of Ra and Rb, in pairs
37. I/Nv 7 Selects the largest element of Nv
38. INv 523178 _ Finds absclute values of Nv
39. 3INV 220111 Finds residuals of dividing Nv by 3
40. @2,7183 1 101 0 2.3 Finds natural logs of specified values
41. 1082 10 100 0.3 1 2 Finds base-10 lcgs
42, 282 4 6.06 12 2.6 Finds base-2 logs
43, 16 720 Finds 6-factorial
44, 2t6 15 Combinations of 6 items taken 2 at a time
45. ?2 3p5 314 Fills a 2x3 matrix with random numbers
345 between 1 and 5

46, o} 2 3.1 6.3 Calculates product of pi and specified data

47. 1ol 2 2 0.84 0.9%1 0.14 Calculates sines

48, 201 2 3 0.54 70.42 70.99 Calculates cosines
49, Nv=2 010000 Determines egquivalence
50. Rb=Nv 000100 Determines pair-wise equivalence
51. Nv#2 101111 Performs indicated logical checks
52. Rb#Nv 110 Performs indicated locical checks
53. 4<Nv 000 Performs indicated logical checks
54. Ra<Nv 101 Performs indicated logical checks
55. RaARb 010 Performs indicated logical checks ("and")
56. RavRb 011 Performs indicated logical check ("or')
57. RaaRb 101 Performs indicated logical check ("nand")
58. RawRb 1000 Performs indicated logical check ('"nor")
59. ~Ra 101 Displays "not" Ra
60. 'BME'eCv 101 Indicates whether BME are elements of Cv
61. Cve'BE' 010010 Indicates where C or E are located within Cv
62, ANV 6342165 Ascending order of elements in Nv
63, YNv 512436 Descending order of elements in Nv
64. NvI4Nv] 8 31257 Reorders elements of Nv from low to high
65. NviYNV] 75217378 Reorders elements of Nv from high to low
66. 15 12345 Generates integers from 1 through 5
67. Nv1.7 5 Indicates the position of 7 within Nv
68. Cvi.'D’ 4 Indicates the position of D within Cv
69. CvI[1+L3] BCD Selects elements 2 through 4 from Cv
70. ®Nv 8717325 Reverses the order of Nv
71. T2¢Cv EFABCD Moves the last two elements of Cv to the front
72. &Nm 376 4 Transposes Nm

2 7 6

8 9 73
73. BNm 0.097 ~0.054 0.096 Calculates the inverse of Nm

“0.023 0.053 0.097

0.083 0.034 "0.012
74. RaBRb 0.75 Least-sgquares estimate of « for Ra=aRb
75. ¢'8 "3 2! 5 32 Turns alphabetic data into numeric data

76.

77.

78.

79.

80.

81.

82,

83.

84.

85,

86.

87.

88.

2€'14°'022
5 1%5 2
cv,'wl’
,C

21Cv
“41Cv
222110
2 2 2715
Ra\14
Ra/Nv
Nm+ . xNm

(13)e,.=13

+(N=1)/L3

1234

5.0 2.0
ABCDEFwl
ABCDEFGHIJKL
AB
AB
5
101
1020234
5737 78

53 28 T18

“24 115 "12
36 16 95

[=N=N
(=N o =]
oo

None

Assigns "14" to Z; then executes 2
Formats the stated numeric values
Catenates Cv to "wl"

Ravels Cm

Takes first two elements of Cv

Drops last 4 elements of Cv

101 in base 2 to its equivalent in base 10
5 in base 10 to its equivalent in base 2
Inserts 0 where 0 appears in Ra

Drops values that correspond to 0 in Ra
Calculates inner product of Nm and Nm

Creates a 3x3 identity matrix;
(in)o.=1n creates an nxn identity
matrix

Goes to label 13 if N=1

